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Anti- BZ-Structure in Effect Algebras

Shang Yun>? Li Yongming,! and Chen Maoyir?

The definitions of sharply approximating effect algebras, Biteffect algebras, cen-
tral approximating effect algebras, and S-afi-effect algebras are given, the rela-
tionships between sharply approximating effect algebras and3@reifect algebras,
between central approximating effect algebras and Bieffect algebras are estab-
lished, and the set of aniZ-sharp elements in S-aréiZ-effect algebras is proved to
be an orthomodular lattice.

KEY WORDS: sharply approximating effect algebras; aB#-effect algebras; central
approximating effect algebras; S-aBiZeffect algebras.

1. INTRODUCTION AND BASIC DEFINITIONS

Since in 1936 Birkhoff and von Neumann regarded the lattice of all closed
subspaces of a separable infinite dimensional Hilbert space which is an orthomod-
ular lattice as a proposition system for a quantum mechanical entity (Ro$jikl
1998), orthomodular lattices have been considered as a mathematical model for
a calculus of quantum logic. With the development of the theory of quantum
logics, effect algebras as a quantum structure which generalize orthomodular lat-
tices, orthomodular posets, and orthoalgebras, are also regarded as a mathematical
model of quantum logics (Foulist al, 1992). The main advantage of an effect
algebra is that it can embody sharp or unsharp properties (Lahti and Maczynski,
1995). However, the shortcoming of it is that the set of sharp elements in a gen-
eral effect algebra is not an orthomodular lattice, not even an orthoalgebra, which
cannot meet the need of physical relevant systems. To avoid the shortcoming,
a BZ-structure was introduced and some properties were obtained (Cattaneo,
1997; Cattaneo and Nistico, 1989; Gudder, 1998a). For the same reason, in this
note, we introduce an anBZ-structure in effect algebras and get some good
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properties. We give the definitions of sharply approximating effect algebras, anti-
BZ-effect algebras, central approximating effect algebras, and Baraifect
algebras establish the relationship between sharply approximating effect algebras;
and antiBZ-effect algebras, the relationship between central approximating effect
algebras and anBZ-effect algebras; and prove the set of @ifi-sharp elements

in S-antiBZ-effect algebras is an orthomodular lattice. Since an S-dominating
effect algebra (Gudder, 1998b) is an S-adfieffect algebra, we conclude that
S-antiBZ-effect algebras may be an abstract model for quantum logics in some
sense.

Definition 1.1. (Cattaneo and Nistico, 1989). LeP{ <, 0, 1)) be a De Morgan
Poset. AB-complementation orP is a unary operation~: P — P that sat-
isfies;ca<a™™,a<b=Db"<a",ana =0, anda~ =a™". If ~ is a B-
complementation o, we call (P, <, 0, 1,/, ~) aBZ-Poset.

Definition 1.2. (Fouliset al, 1992). A structure R, &, 0, 1) is called an effect
algebra if 0,1 are two distinguished elements ani$ a partially defined binary
operation orP that satisfies the following conditions for aayb, ¢ € P:

(ED)bda=adh.

(E2)@dbydc=ad (b@c).

(E3) For everya € P, there exists a uniguie € P such thaa@® b = 1 (we put
a =bh).

(E4) If 1 @ ais defined, them = 0.

An orthoalgebra is an algebraic systeR 0, 1,®) that satisfies (E1), (E2), (E3),
and

(ES): If a® a exists, them = 0.

Remark 1.3. Leta andb be two elements of an effect algeliPa

(i) aLlbiff a<biff ad bis defined inP.
(i) a < biff there exists an elememte P such that & c = b.
(i) b is the orthocomplement af iff b is a unique element d? such that
a®b=1anditis writtera'.

Obviously, P, <, 0, 1,") is a De Morgan poset.
Definition 1.4. (Gudder, 1998a). LetR, <, 0, 1)) be a De Morgan Poset. An

element € Pissharpifana = 0. PutP; = {a € Pla A a = 0}. Obviously, 0,
1,ePs.

Example 1.5. (Lahti and Maczynski, 1995). Letl be a complex Hilbert space
and lets(H) be the set of self-adjoint linear operatorstdnwhose inner product
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is (|) and satisfie¥p € H, 0 < (Ag|¢) < ||#I% - ¢(H) is a poset with respect to
the partial ordering; < Az iff V¢ € H, (A1d|dp) < (Ax¢|p). Obviously, O is the
smallest element, 1 is the largest elements@H). For A, B € ¢(H), we write
AL Bif A+ B € ¢(H)and we definfA @ B = A+ B. IfwedefineA' =1— A
for A e e(H), it is clear that §(H), @, 0, 1) is an effect algebra which we call
a Hilbert space effect algebra. The famil§H )s of all sharp elements is the set
P(H) of all orthogonal projections ohl.

Definition 1.6. (Gudder, 1998a). LetR, < 0, 1/) be a De Morgan Pose®
is sharply dominating if everg € P is dominated by a smallest sharp element
w(@) € Ps (i.e., ()a < u(a), (i) if a < b e P, thenu(a) < b).

Definition 1.7. (Gudder, 1998b). A sharply dominating De Morgan poBds
called S-dominating DM-Poset# A p exists for evenya € P, p € Ps.

Lemma. 1.8. (Gudder, 1998a).et P be an effect algebra andaPs. Ifb € P
with a_L b then a® b is a minimal upper bound for a and b.

Lemma. 1.9. (Fouliset al, 1992).An orthomodular poset is an orthalgebra P
that satisfies the following conditions:

For p,qe P,if pLq,then pvqgexistsand py q = p®q.

Definition 1.10. (Greechieet al, 1995). For an effect algebrd@(®, 0, 1), an
elementz € P is called central iff for every € P there existx A zandx A Z

andx = (X A 2) vV (X A Z). The setC(P) of all central elements d? is called the
center ofP.

2. ANTI-BZ-EFFECT ALGEBRAS
Definition 2.1. Let P be a De Morgan Poset. A unary operationP — P is
called an antBZ-complementation if it satisfies

(i) a** < a.

(i) a<b=b*<a"
(i) ava*=1.
(iv) a¥ =a™.

If * is an antiB-complementation o, we call (P, <, 0, 1,*,’) an antiBZ-Poset.

Example 2.2. The poset{(H), 0, 1,%,”) is an antiBZ-Poset with respect to
(i) FF=1-F,forall F € ¢(H); and
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(i) F* = Ekert—r)r = Erancery- Where Kerf) denotes the kernel of the
operatorF and Ran{) denotes the closure of the R&)(of F, Ey
denotes the projection onto the subsphitef H.

An element in an antiBZ-PosetP is antiBZ-sharp relative te if a = a**.
PutP; = {a € Pla = a**}. Obviously,s(H)% = P(H).
It is easy to prove the following proposition.

Proposition 2.3. Let P be an anti-BZ-Poset. Then unary operatien P — P
satisfies the following properties (where we defihe-01).

@i 1= =1.
(i) a** <a,forallac P.
(i) a*** =a**, foralla e P.
(iv) a<b=a** <b*™ forabe P.
) ((@*))* = (a=),foralla c P.
(vi) a*A (@) =0, forallae P.
(vii) av (@*) =1, forallae P.

Obviously, the operatotx is an interior operator by (i), (ii), (iii), and (iv).
Together with (v), we conclude that it is a universal quantifer (Halmos, 1962).
Conversely, we can construct an aB#-poset by (i), (ii), (iv), (v), and (vii).

Proposition 2.4. Let (P, <, 0, 1)) be a De Morgan Poset with the mapping
P — P satisfying the following conditions:

() n(1)=1.

(i) n(@)<a,forallace P.
(i) a <b=n(@) < n(b), fora,be P.
(iv) n(n(@)) =n(a)y,foralla e P.

(v) avn(a) =1,forallae P.

Then (P, 0, 1/, n) is an anti-BZ-Poset, with respect t6 & n(a).

Proof: Leta,b e P, a < b,theny(a) < n(b) by (iii). Son(b) < n(a),i.e.,.b* <
a*. Sincea™ = n(n(a)’) = n(a), thena™ < a by (ii). Obviously,av a* =av
n(@’ =1.a* =n(a) = a*. Thus, P, <, 0, 1/, n) is an antiBZ-Poset. O

Proposition 2.5. Let P be an anti-BZ-Poset. ThensaP; if and only if & = a*.

Remark 2.6. If P is an antiBZ-Poset, therP; < Ps.

However, in general; # Ps. For instance, leP be an orthoalgebra, define
1* =0, and for allp # 0, let p* = 1. Evidently, P, <, 0, 1,%,”) is an antiBZ
Poset. ButP; = {0, 1}, Ps = P.
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Lemma. 2.7. Let P be an anti-BZ-Poset.

() Ifa Abexistsin P, then (a b)* = a* v b*.
(i) If P& = Ps, then the following statements are equivalent:
(1) ac P, (a=a", (3)d =a".

Corollary 2.8. Let P be an anti-BZ-Poset withiP= Ps and letg b € Ps.

() Ifa A bexists, thena b € Ps.
(i) Ifa v bexists,thena b e Ps.

Proof: (i) Suppose that A bexists. Applying Lemma2.7(i), we have ( b)* =
a*vb*=a vb =(aab). By Lemma 2.7(ii), we have thatA b € Py = Ps.
(iBy (avby=a b O

Definition 2.9. Let (P, &, 0, 1) be an effect algebr&. is sharply approximating
if for everya € P is approximated by a largest sharp elemsad) € P (i.e., (i)
v(a) < a, (ii) if b <aandb € Ps, thenb < v(a)).

Remark 2.10. Let (P, &, 0, 1) be an effect algebra. & € Ps, thena = v(a) =
@), a =v(@) = u(@).

Example 2.11. ¢(H) is a sharply approximating effect algebra. Indeed, for all
F € ¢(H), v(F) = Ekera—r). Obviously, v(F) € P(H), and since for allx €

H, (v(F)x|x) = [[x1]1® < (FX|X) = x1]|? 4+ (FXal2), wherex; € Ker(1— F), x,

e Ker(1— F)*,whichimpliesv(F) < F.If G € P(H),andG < F,then1- F <

1 -G, soKer(l- G) <Ker(1— F),i.e.,G = Erance = Ekera—c) < Ekera-r)

= v(F).

Theorem 2.12. Let P be a De Morgan Poset. Then P is sharply approximating
if and only if it is sharply dominating.

Proof: “Only if part” Foreverya’ € P, there exists(a’) < a’ sinceP is sharply
approximating. Soa” < (v(a)), i.e.,a < (v(@'))’. Obviously, ¢(a’)) € Ps. For
everyc € Ps,a < c,thenc <a'.So,c <v(@)byc € Ps. Thus ¢(@)) <c¢’" =
c.i.e,u(@ = (@)).

“If part.” For everya € P, there existgi(a) € Ps such that < p(a). Simi-
larly, fora’, a’ < u(a’). Then @(a’)) < a” = a. Obviously, («(a"))" € Ps. For ev-
eryc € Ps, c < a,thena’ < ¢/, whichimpliesu(a’) < ¢. Thusc” = ¢ < (u(a))'.
Hencey(a) = (u(a))'. O

Proposition 2.13. Let P be a sharply approximating De Morgan poset.
P — P is the sharply approximating mapping, and P — P is the sharply
dominating mapping. Thew, 1) is a pair of adjoint.
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Proof: Obviously,forevery, b € P, a < b,thenv(a) < v(b),andu(a) < u(b).
i.e.,v andu are both monotone. For evesye P, u(v(a)) = v(a) < a, v(u(a)) =
w(@) > a. So, @, ) is a pair of adjoint.

Clearly,v preserves existing meet, preserves existing join. O

From this proposition, we see the necessity of rough approximatiSi&in
algebra structure (Cattaneo, 1997).

Theorem 2.14. Let P be a sharply approximating De Morgan Poset. Then there
exists a unique anti-B-complementatier(resp., B-complementation) on P
such that B = Ps(P;" = Ps).

Conversely, if P is an anti-BZ- Poset (resp., BZ-Poset) in whigh=FPs
(resp., B = Ps), then P is sharply approximating and & (v(a))’ (resp., & =
v(@)), foralla € Ps.

Proof: (i) Let P be a sharply approximating De Morgan PosetP — P isthe
sharply approximating mapping. Obviousljl) = 1 andv(a) < a. Leta, b € P,
if a <b, thenv(a) < v(b). Since for everya € P, v(a) = a. Thenv(v(a)) =
v(a) by v(a)’ € Ps. Evidently,av v(a) = 1 byv(a) < aandv(a) € Ps. Hence,
definea* = v(a)'. Then P, <, 0, 1,%,”) is an antiBZ-Poset by Proposition 2.4.

To showP; = Ps.P; € Ps by Remark 2.6. Assume thate Ps. Thena =
v(a) such thad’ = a*. Soa € P{. Thus,P; = Ps.

For uniqueness, suppogeis an antiB-complementation o such that
P2 = Ps. Sincea®® = a*'is the largest sharp element that approximatinge
havea®® = a® < a.Forbe P;,b < a,thena® <b®, b=b% =p2 <a? =
a’?. Soa® =(a),i.e.,a® = (v(a)) = a*. Hencex is unique.

(i) Fora e P,a™ € Ps anda* < a. If b € Ps andb < a, thenb = b**
a*™* < a. Soa™ = v(a). ThenP is sharply approximating ana (@)’ = (a**)’
a*** — a*.

I 1A

O

For another case, we can refer to Gudder (1998a).

Corollary 2.15. Let P be a sharply approximating De Morgan Poset.P —
P is the sharply approximating mapping. Lét& v(a), a~ = v(a). Then,

(i) ~*: P — P is an interior operator.
(i) ~x: P — P isa closure operator.
(i) Foreveryae P,a*™* =a*,a™" =a".
(iv) Foreveryae P;,a*™™* =a™" =a.

Definition 2.16. If (P,0,1,4) is an effect algebra and is an antiB-
complementation o, we call (P, 0, 1,4, ) an antiBZ-effect algebra. In par-
ticular, (P, <, 0,1/, %) is an antiBZ-Poset. By Theorem 2.14, we can obtain.
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Corollary 2.17. (i) If P is a sharply approximating effect algebra, then there
exists a unique anti-B-complementatieron P such tha(P, 0, 1,®, %) is an
anti-BZ-effect algebra and P= Ps.

(i) If P is an anti-BZ-effect algebra in which;P= Ps, then P is sharply
approximating and &= (v(a)), foralla € P.

Corollary 2.18. Suppose that P is a sharply approximating effect algebra. Let
a,be P,

(i) Ifa Abexists,thena b € Ps.
(i) Ifa v bexists,thena/ b e Ps.

Proof: By Corollary 2.17 and Corollary 2.8. O

Proposition 2.19. Let (P,@, *, 0, 1) be an anti-BZ-effect algebra, therf 8 an
orthoalgebra.

Proof: Obviously, 0, 1€ Py,ac Py iff & € Py. Fora,be P}, alb, then
a,b<(@a@b)ie,@®b)* <a* b*.Hencea=a" <(@a®b)’ =(@db)* <
(@@b),b=b" <(@®b)* =@®db)* <(@adb), thusad b= (a®d b)** by
Lemma 1.8. Ifa @ a exists, i.e.a < &, thena =0 by Py C Ps. O

Corollary 2.20. If P is a sharply approximating effect algebra, then i® an
orthoalgebrain P.

Proof: By Corollary 2.17. O

Definition 2.21. Let P be an effect algebra is central approximating if every
elemenia € P is approximated by a largest central elemg().

Remark 2.22. There exists a central approximating effect algebra but nota sharply
approximating effect algebra.

For example (Riecanova, 2001), let= {0,a,b,a® a,bd b,ad b, a, v,
(@a@a), (bdb), (adb), 1} be an effect algebra in which, b, (a® a)’, (b ®
b), (a ® b) are atoms. Moreoves, =a® (ad®a) =bd (adb) andb’ =aa®
(@a®b)y =b@ (bdb).Furtherforeverx € P, x @ X' = 1and0® x = x. Then
Ps={adabobadb (@ada),(beb), (@sdb),o0,1.C(P)={0,1.Ob-
viously, for element’ € P, there does not exist a largest sharp element approxi-
mating it. But it is easy to check(a) = O for everya € P.

Conversely, a sharply approximating effect algebra may not be a central ap-
proximating effect algebra. Indeed,Rfis an orthomodular lattice, then for every
elementa € P, v(a) = a. Buty(a) may not equah unlessa € C(P).
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Theorem 2.23. (i) If P is a central approximating effect algebra. Then there
exists a unique anti-B-complementatigron P such that (P, 0, 1%, %) is an
anti-BZ-effect algebra andP= C(P).

(i) If P is an anti-BZ-effect algebra in which;,P= C(P), then P is central
approximating and &= (y(a)), foralla € P.

Proof: (i) Let P be a central approximating effect algebya: P — P is the
central approximating mapping. Obviough(1) = 1 andy(a) < a. Leta, b € P,
if a < b, theny(a) < y(b). Since for evera € C(P), y(a) = a, theny (y(a)) =
y(@) by y(a) € C(P). Evidently,av y(@) = 1byy(a) <aandy(a) € C(P).
Hence, defin@* = y(a)’. Then P, <, 0, 1,%,") is an antiBZ-effect algebra by
Proposition 2.4.

Sincea € P/ iff a** = aiff a** = y(y(a)’) = y(a) = aiff a € C(P). Thus,
Py =C(P).

We can prove * is unique similar to Theorem 2.13.

(i) We havea** < a anda** € C(P). Supposé € C(P) andb < a. Then
b =b** < a** < a. Hence,y(a) = a**. O

Corollary 2.24. If P is a central approximating effect algebra. Theg B a
Boolean subalgebra.

3. S-ANTI-BZ-EFFECT ALGEBRAS

Definition 3.1. A De Morgan PoseP is called an S-De Morgan Poset if it satisfies
the following condition: (Sha A p exists for alla € P, p € Ps. (It follows from
De Morgan'’s laws thaa v p exists.)

Definition 3.2. An effect algebra is called an S-effect algebra if it satisfies S
condition (similarly for S-antBZ-effect algebras).

Proposition 3.3. Let P be an S-effect algebra, and letaP, p € Ps.

(i) Ifa L p,thenav p=a® p.

(i) fa’ L p/,thenan p=(a' & p).
(i) Ifa < p,thenad (pAr &) = p.
(iv) If p<a,thenpv(anap)=a.

Proof: (i)Leta L p,thena < p’anda A p=0byp € Ps. Sincea v p exists,
thenad p=(av p)® (an p)=av p(Greechiest al., 1995).

(iIf & L p,then@ @ p) =@ Vv p)=anpby (i) and De Morgan
law.
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(i) Sincea < p,thenp=ad (a@ p) =ad(avp) =ad(pra)by
(i) and the effect algebra orthomodular identity.

(iv)Sincep<a,thena=p@d(pda) =pe@vp =ped(@anp)=
pv@Aap). O

Theorem 3.4. Let P be an S-anti-BZ-effect algebra, thghi®an orthomodular
lattice.

Proof: Obviously,P; is an orthomodular poset by Proposition 2.15 and Proposi-
tion 3.3(i). We only have to prov; is a sublattice under the restriction ordeRof
Foralla, b € P}, (a A b)*™ = a A bby**isaninterior operator. Sinca { b)** =

(a/ A b/)/** — (a* A b*)’** — (a*/ Vi b*/)** — (a’* Vv b’*)** — (a/ A b/)*** — (a/ A

b')* = a v b. SoP; is a sublattice. Thus? is an orthomodular lattice. O

Corollary 3.5. (Gudder, 1998b)Let P be an S-dominating effect algebra, then
Ps is an orthomodular lattice.

Proof: Evidently, P is sharply approximating (sharply dominating). HenBe,
is an antiBZ-effect with P = Ps by Corollary 2.17. TherPs is an orthomodular
lattice by Theorem 3.4. O

Therefore, we can obtain the classical conclusion.
Corollary 3.6. P(H) is an orthomodular lattice.

Proof: Sincee(H) is S-dominating (Gudder, 1998b). O
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